
Chapitre 4 : corrigé 
 
Exercice 4.2 
Soit, dans un repère Oxyz, le tenseur homogène des contraintes, σij, suivant : 
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Que signifie tenseur homogène ? 
Un tenseur homogène est un tenseur qui ne varie pas dans l’espace cad qu’il n’est pas fonction 
de la position M ie de x,y ou z. Il pourrait cependant varier avec le temps. 
Quelle est la force (vecteur puis norme en Newton) agissant sur la surface triangulaire 
ABC donnée dans la figure ci-dessous ? 
Le triangle (ABC) a pour équation : x/4 +y/3 + z = 1 
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Vecteur densité de force agissant sur l’ellipsoïde de révolution de demi-axes OA, OB et 
OC au point D (0, 3/2, 3 / 2 ) 
L’ellipsoïde a pour équation : 
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Valeurs propres du tenseur σ. 
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Vecteur propre associés aux 3 valeurs propres 

I

1 3 2 1
1n ? tel que σn  = 100 3 1 2 n = -200n.  On trouve n = -1  
22 2 6 0

−   
  −   

   − −  

 

II III I II

3 1 1 1 1
1 1n ? tel que σn  = 100 1 0 2 n = 200n.  On trouve n = 1  et  n =n n  = -1
3 61 2 0 1 2

−     
     ⊗     
     
     

 

Représentez graphiquement le tri-cercle de Mohr associé à ce tenseur des contraintes 
en explicitant ce qu’il représente. 
le tri-cercle de Mohr associé à ce tenseur des contraintes représente l’ensemble des couples 
(tn,tτ) quand la normale n balaie l’espace. Il renseigne sur le maximum de cisaillement. 
 
Exercice 4.5 
Soit (e1,e2,e3) un repère orthonormé. On considère un tenseur σ donné par : 
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Calculer la trace, le deuxième invariant et le déterminant de σ. 
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On effectue une rotation de 45° autour de e1. Exprimer la matrice de passage P vers le 
nouveau repère (X’=PX) et le tenseur σ dans le nouveau repère. 
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Déterminer alors les valeurs propres du tenseur σ et les vecteurs propres associées.  
Les vp sont 10 MPa, α10 MPa et –α10 MPa et les vecteurs propres sont ex et ey et ez tournés 
de 45° autour de ex. 
Dans le repère propre, déterminer les composantes normale, tn, et tangentielle, tτ, de la 
densité de forces de contact, t, pour la direction x1 = x2 = x3 en fonction de α. 

2 2 20 0 0
n τ n

1 1
σ σ σ1n = 1   et  t = n α  , t = n.n  et t = t -t = 2+6α   

3 33 31 -α
σ σ

   
   = =   
   
   

 

 
Exercice 4.13  Tension sur un câble suspendu et sur une aube de turbine 
 
Calculer la tension : 
(a) le long d'un câble suspendu de section constante, soumis à la gravitation. 
(b) le long d'une aube de turbine de section constante, tournant autour d'un axe Oz à une vitesse 

angulaire Ω. Pour ce cas, on néglige la gravité et on déterminera la densité de force 
centrifuge volumique au point distant de r du centre de rotation. 
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Tension le long d'un câble suspendu de section constante, soumis à la gravitation. 
La contrainte s’exerce selon z et ne dépend que de z : σzz = σ(z). Les autres composantes des 
contraintes sont nulles. On note –H la position d’attache du câble. 

divσ + ρg = 0 donne selon z: ρg = 0 Ainsi ρgz + A

avec A =0 car  0 en z = 0 (section inférieure du cable)
En z = -H, ρgH=ρgSH /S =mg/S avec S : section du cable
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Tension le long d'une aube de turbine de section constante, tournant autour d'un axe Oz 
à une vitesse angulaire Ω. Pour ce cas, on néglige la gravité et on déterminera la densité 
de force centrifuge volumique au point distant de r du centre de rotation. 
On travaille en coordonnées cylindriques. Le tenseur des contraintes ne dépend que de r en 
régime permanent i.e. à vitesse angulaire constante. La force volumique n’est plus la gravité 
mais la force centrifuge. Un petit élément de masse m et de volume ∆v subit une force 
centrifuge valant mV2/r = mrω2 = ρ∆vrω2 avec V la vitesse et r la distance au centre. Cette 
force divisée par le volume ∆v correspond à la densité de force volumique f soit f = ρrω2 portée 
par ur. L’équilibre statique nous donne alors : 
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